1,811 research outputs found

    Pharmacogenomic biomarker information differences between drug labels in the United States and Hungary: implementation from medical practitioner view

    Get PDF
    Pharmacogenomic biomarker availability of Hungarian Summaries of Product Characteristics (SmPC) was assembled and compared with the information in US Food and Drug Administration (FDA) drug labels of the same active substance (July 2019). The level of action of these biomarkers was assessed from The Pharmacogenomics Knowledgebase database. From the identified 264 FDA approved drugs with pharmacogenomic biomarkers in drug label, 195 are available in Hungary. From them, 165 drugs include pharmacogenomic data disposing 222 biomarkers. Most of them are metabolizing enzymes (46%) and pharmacological targets (41%). The most frequent therapeutic area is oncology (37%), followed by infectious diseases (12%) and psychiatry (9%) (p < 0.00001). Most common biomarkers in Hungarian SmPCs are CYP2D6, CYP2C19, estrogen and progesterone hormone receptor (ESR, PGS). Importantly, US labels present more specific pharmacogenomic subheadings, the level of action has a different prominence, and offer more applicable dose modifications than Hungarians (5% vs 3%). However, Hungarian SmPCs are at 9 oncology drugs stricter than FDA, testing is obligatory before treatment. Out of the biomarkers available in US drug labels, 62 are missing completely from Hungarian SmPCs (p < 0.00001). Most of these belong to oncology (42%) and in case of 11% of missing biomarkers testing is required before treatment. In conclusion, more factual, clear, clinically relevant pharmacogenomic information in Hungarian SmPCs would reinforce implementation of pharmacogenetics. Underpinning future perspective is to support regulatory stakeholders to enhance inclusion of pharmacogenomic biomarkers into Hungarian drug labels and consequently enhance personalized medicine in Hungary

    Structural and functional substrates of tetanus toxin in an animal model of temporal lobe epilepsy

    Get PDF
    The effects of tetanus toxin (TeNT) both in the spinal cord, in clinical tetanus, and in the brain, in experimental focal epilepsy, suggest disruption of inhibitory synapses. TeNT is a zinc protease with selectivity for Vesicle Associated Membrane Protein (VAMP; previously synaptobrevin), with a reported selectivity for VAMP2 in rats. We found spatially heterogeneous expression of VAMP1 and VAMP2 in the hippocampus. Inhibitory terminals in stratum pyramidale expressed significantly more VAMP1 than VAMP2, while glutamatergic terminals in stratum radiatum expressed significantly more VAMP2 than VAMP1. Intrahippocampal injection of TeNT at doses that induce epileptic foci cleaved both isoforms in tissue around the injection site. The cleavage was modest at 2 days after injection and more substantial and extensive at 8 and 16 days. Whole-cell recordings from CA1 pyramidal cells close to the injection site, made 8–16 days after injection, showed that TeNT decreases spontaneous EPSC frequency to 38 % of control and VAMP2 immunoreactive axon terminals to 37 %. In contrast, TeNT almost completely abolished both spontaneous and evoked IPSCs while decreasing VAMP1 axon terminals to 45 %. We conclude that due to the functional selectivity of the toxin to the relative sparing of excitatory synaptic transmission shifts the network to pathogenically excitable state causing epilepsy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00429-013-0697-1) contains supplementary material, which is available to authorized users
    corecore